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DIVERGENCE OF CONTINUED FRACTIONS 
RELATED TO HYPERGEOMETRIC SERIES 

LISA LORENTZEN 

ABSTRACT. Let K(an /bn,) be a limit periodic continued fraction of elliptic type; 
i.e., an -> a and bn -> b, where a/(b + w) is an elliptic linear fractional 
transformation of w . We show that if E Ian - al < oo and E I b - bI < oo, 
then K(a l/b,,) diverges. This generalizes the well-known Stern-Stolz Theorem. 
The Gauss continued fraction (related to hypergeometric functions) is used as 
an example. We also give an example where an - a = &(n - 1) and bn = b = 1 
and K(a l/b,) converges. The divergence result is also generalized further. 

INTRODUCTION 

A continuedfraction 
an oo an a, a2 a3 

K(anlbn) =K b= Kl n b b+3 
bn n=1 bn bl+b2+b3+*** 

a, 
(0.1) a_ 

b, + 

b2+ a3 2 b3 + 
where an E C \ {O} and bn E C for all n, is said to converge if its sequence of 
(classical) approximants 

k an a, a2 foak123,. 
(0.2) f n=lbn bl+b2+*.++bk 

converges in C =Cu {oo}. Its value is then f = limfk. We say that K(an/bn) 
diverges if this limit does not exist in C. We adopt the convention that a 
continued fraction K(an/bn) has all an $ 0 by definition. 

The numerators {An}n=i 1and denominators {Bn}' 1I of K(an/bn) are the 
solutions {Xn } of the linear recurrence relation 

(0.3) Xn=bnXnI+ anXn-2 forn=1,2,3,... 

with initial values B_1 = 0, Bo = 1, A_1 = 1, Ao = 0. With this notation, 
the (modified) approximants Sn(w) of K(an/bn) can be written 

(0.4) Sn(w) = a1 a2 a+ + An + -1w for n = 1, 2, 3, .... 
_______ 1bi+ b2 + --+ bn +w Bn +Bn-lw 
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In particular, fk = Sk(O) = Ak/Bk. We also have the well-known determinant 
formula 

n 
(0.5) AnBnI -BnAn-I = (1l)n+l I| ak 

k=1 

It is also useful to write A k) and B k) for the numerators and denominators 
of the kth tail of K(an/bn), which is the continued fraction 

(0.6) ak+1 ak+2 ak+3 k E No. 
bk+I + bk+2 + bk+3 + " 

(N is the set of positive integers, and No = N U {0} .) Clearly, A(?) = An and 
B(?) = Bn 

The aim of this paper is to find criteria for divergence of continued fractions. 
It is important to study divergence in order to learn more about convergence. 
This was realized already in 1860 when Stern [13] published the result that 
K(1/bn) diverges if 

(0.7) ZIbnl<oo. 

(However, its even approximants {f2n} and its odd approximants {f2n+ I} both 
converge to finite values.) This was also known to Stolz [14], and the result is 
called the Stem-Stolz Theorem. Later, Van Vleck [16] published his stunning 
result that if Iarg(bn)l < 7r/2 - e for all n for some e > 0, then K(l/bn) 
diverges if and only if (0.7) holds. So, in this sense, (0.7) is an optimal criterion. 

We shall generalize the Stern-Stolz Theorem in the next section. The proofs 
are given in ?2, and ?3 contains a further generalization. 

1. THE LIMIT PERIODIC CASE 

Let K(a/b) be a periodic continued fraction of elliptic type; i.e., a E C\{0}, 
b E C, and 

(1. 1) s(w) =b+ 

is an elliptic linear fractional transformation with s(w) having two distinct 
fixed points x and y such that IXI = lYI . Actually, if x is a fixed point for s, 
then y = -(b + x) is its second fixed point. Hence s is elliptic if and only if 

(1.2) x $ -(b + x) and lxl = lb + xl. 

It is then trivial to see that K(a/b) diverges. (See, for instance, [8, p.47].) We 
want to study limit periodic continued fractions K(an/bn) of elliptic type; i.e. 
an - a and bn -- b where a and b are as above, and we shall study their tail 
sequences {tn} I 0; i.e., tn E C and 

(1.3) tn- 1 = sn(tn) = forn=1,2, 3,..... 
bn + tn 

Theorem 1.1. Let K(an/bn) be limit periodic of elliptic type with 
00 00 

(1.4) lIan -al < oo and Zlbn -bl < oc. 
n=1 n=1 
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Then 
A. K(a,/b,) diverges. 
B. Its (modified) approximants 

(1.5) a, a2 
an 

=5__ Sn (x) =bT+ b2+ --+ bn=sXlo SIo...s2 n (x) 

converge to a limit to E C as n -- oc, if x is a fixed point of (1.1). 
C. Its tail sequence {tn }, with to = lim Sn (x), converges to x. 

Remarks. 1. Part C implies that limSn(x) # lim Sn(-b - x) in part B. 
2. In part B we actually prove the stronger result that 

(1.6) (b + A)nI and (b + B)nI 

both converge separately to finite values which are not both equal to zero. 
3. The way in which K(an/bn) diverges depends on the ratio (b+x)/(-x) = 

eiO . From the proof of Theorem 1.1 it follows that if {eino0 }loo is k-periodic 
(i.e., 0/17 is a rational number), then {Sn(0)} is limit k-periodic, and if 07r 
is nonrational, then {Sn(0)} has infinitely many limit points. For a = 1, b = 0 
we have 0/ir = -1, and thus {Sn(0)} is limit 2-periodic, just as we know from 
the Stern-Stolz Theorem. 

4. Theorem 1.1 generalizes a result from [4]. 
5. Theorem 1.1 generalizes the Stem-Stolz Theorem since (1.1) is elliptic 

if b = 0. (See (1.2).) Actually, we get slightly more, also in the Stern-Stolz 
situation, i.e., if K(l/bn) diverges by (0.7). Then the two fixed points of s are 
x = 1 and x = - 1, so that the limits of Sn (1) and of Sn (- 1) both exist (and 
are distinct), and the tail sequence {tn } with to = lim Sn (1), converges to 1, 
the one with to = limSn(- 1) converges to -1 . 

6. Theorem 1.1 really expresses the idea that if K(an/bn) is "near enough" 
to a given continued fraction K(a/b), then K(an/bn) "behaves almost like" 
K(a/b). This is an old and fruitful idea. See, for instance, [11, ?19], [5], 
[15]. However, the emphasis has normally been on convergence rather than 
divergence. Still, it is possible also to derive Theorem l.lA from [3, Theorem 
2b] by a simple argument. 

Let us see what consequences Theorem 1.1 has in a particular example: The 
Gauss continued fraction 1 + K(an z/ 1), where 

(1.7) am- (b+n)(c-a+n) (a+2n)(c-bn+ n) 

(c +2n- 1)(c+2n) a2'+l (c+2n)(c+2n+ 1) 

(see for instance [8, p.199]) converges to the ratio 

(1.8) f(z) - ~~~2F1 (a, b; c; z) 
(1.8) f(z) = 2F1(a, b+ 1; c+ 1; z) 

of hypergeometric functions in the cut plane {z E C; I arg(l - z)I < 7r} . But 
what happens on the cut z > 1 ? A natural thought is that there the continued 
fraction diverges. And indeed, by means of Theorem 1. lA we can prove that 
this is so. 
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Theorem 1.2. Let 1 + K(a,z/l) be given by (1.7), where a, b, and c are 
complex numbers chosen such that all an are well-defined numbers in C\{O}. 
Then 1 + K(an z/ 1) diverges if either 

A. z > 1 
or 

B. z=l and c-a-b=it fora teR\{O}. 

(The Gauss fraction converges for z = 1 if c = a + b or if Re(c - a - b) :$ 0.) 
Not every limit periodic continued fraction of elliptic type diverges. This is 

evident from Van Vleck's Theorem, quoted in the introduction. For instance, 
K(1/bn) converges if all 0 < bn -- 0 with Ebn = oo. It was also proved by 
Gill [2] to be true in cases outside the Stem-Stolz situation, but no examples 
were given. The following theorem provides such an example: 

Theorem 1.3. The continued fraction K(an/ 1), where 

(12' 2itn + 1+it +r 
(1.9) an= + t2) +r2t+ 2 + t for n = 1, 2, 3,... 

with r E C and t E R \ {0}, converges in C if Re(r) < -(4 + t2). 

We have implicitly assumed that t and r are chosen such that all an = 0. 
Expression (1.9) may seem somewhat strange. But K(an/l) is chosen such 

that 

(1.10) an=ttn-1(+tn), tn_i=-I +it+r forn= 1,2,3,...; 

i.e., K(an/ 1) is limit periodic of elliptic type, and {tnI is a tail sequence for 
K(an/1), in fact a tail sequence converging to x = -I + it. 

2. PROOFS FOR THE LIMIT PERIODIC CASE 

We shall use the following lemmas to prove Theorem 1.1. 

Lemma 2.1. Let {tn} be a tail sequence for K(an/bn) such that all tn $z oo. 
Then 

n k n 

(2.1) BnZ( j7 (bm+tm) fI (tm)) for n=0, 1,2,. 
k=0 m=l m=k+l 

Note that we also have all tn $z 0 and all (bn + tn) $z 0 when all tn $z oo. 
This follows from (1.3). The proof of Lemma 2.1 is by induction, using the 
recurrence relation (0.3) and the fact that 

(2.2) an =tn_i(bn+tn) for n = 1, 2, 3, .... 

(See (1.3).) The formula (2.1) can essentially be found in [7]. 

Lemma 2.2. Let {Bn} and {Bn} be the denominators of K(an/bn) and 
K(&n/bn), respectively. Then 

n 

(2.3) Bn = Bn + Z((bk - bk)B2 k + (ak+n--kak+1)B_kl)Bk1 
(2.3) k=1 

for n = 0, 1, 2. 
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This can be proved by manipulating the recurrence relations for Bn and Bn. 

(See [10].) 
One can also derive similar results for the numerators An but that is not 

necessary here, since we always have 

(2.4) An= alBl)1 

Lemma 2.3. Let M > 0, Pn > 0 and qn > 0 satisfy 

n-i 

(2.5) Pn < M + E qkpk for n = 0, 1, 2 
k=O 

Then 
n-i 

(2.6) P M J(1 + qk) < Mexp ( qk) for n=0,1,2. 
k=O k=o 

This result, which essentially can be found in [1, p. 455], can be proved by 
induction, using that exp(q) > 1 + q for q > 0. 

Let us now turn to the more special case where K(an/b,) is limit periodic 
of elliptic type. We shall use the fact that K(an/bn) behaves almost like the 
corresponding periodic continued fraction K(a/b) under our conditions. For 
the periodic one we have: 

Lemma 2.4. Let {n } be the denominators of the periodic continued fraction 
K(a/b) of elliptic type, and let x be a fixed point of the corresponding elliptic 
linear fractional transformation (1.1). Then {n n=(-x)-n}??- isboundedand 
diverges by oscillation. In fact, 

(2.7) (B)n = (b + x)i+l 
j=O 1b x 

where I(b+x)/xl=1,but (b+x)/x$-1. 

Proof. The formula (2.7) is a simple consequence of (2.1), if one uses the fact 
that the constant sequence {x} clearly is a tail sequence for K(a/b) . The rest 
then follows by (1.2). o 

This leads to the following result for our limit periodic continued fraction: 

Lemma 2.5. Let K(an/bn) be as in Theorem 1.1 with denominators {Bn}, let 

{B(m)} be the denominators of its mth tail, and let x be a fixed point of the 

corresponding elliptic transformation (1.1). Then: 

A. The sequences {B(m) * (-x)}-n} oo are bounded, uniformly with respect to 

m. 

B. At least one ofthe two sequences {Bn(-x)-} and {Bn1).(-x)-} diverges 

by oscillation. 

Proof. A. We use Lemma 2.2 with K(a/b) as K(anl/bn). This gives 
(2.8) 

Bn _ n + E (bk-b Bn-k+ ak+1-a Bn-k- Bk- 

(-X)n (-X)n k= 1 -X (-X) X2 (-x)n-k-1 (-X)k-1 
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where we have used that B(k) = Bm since K(a/b) is periodic. By Lemma 2.4 
we know that 

(2.9) - bx =: M < oo for all m. 

Hence, 

(-n) ?M+Z bk-b 
akl-aBk 

(2.10) < M + + ak+2-a)M (-x)k-1 

so by Lemma 2.3, 

Bn < Mexp G7bkb + ak+-aM 

(2.11) k=1 / 

< Mexp (M Z, (| bk b + ak+l -a )) Ml. 

Similarly, 

B(m) faa bk- b ak+l- aV 
(2.12) n < Mexp (M (| -X + <2) ) Ml - 

k~~k=m+1 

forall n>1 and m>0. 
B. To prove the oscillation, we insert (2.7) into (2.8). For convenience we 

write 

(2.13) 3 = (b + x)/(-x). 

Then (2.8) can be written 
(2.14) 

Bn 1 _ 6n+l 
n (bk-b i _n-k+l ak+la- 1a I n-k Bk-I 

()n 1- -X 1- x2 1- (-X)k- 

{1 t( bk-b ak+l-a Bki} 
= 1 1 l+ E 

k 
+ 

2 

k-I 

2n+5 { (bk-b3k ak+l-ak Bk- 

- 1 - 1] + Ek + 2 (-X)k-1 I 

where both series in the last expression converge absolutely as n -? oo. Hence, 
the jn+ -term gives the oscillation unless 

(2.15) 1+E (bk-b,k + ak+-5 a-k-) (kl = 0. 

Assume that (2.15) holds. Then {Bn * (-x)-n} converges to a finite num- 
ber. Assume that also {B(') * (-x)-n} converges to a finite number. Then 
{Bnm) * (-x)n} converge to finite numbers for all m E N, since by induction 

(2.16) B(m) = bm+ B(m+l) + am+2B(m+2). 
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That is, by the arguments above, 

(2.17) +E (bk+m-rb3-k + ak+m+ -a-k-4) k = 0 

for all m E N. This is impossible since (1.4) holds, 3JI = 1, and 
{Bm)l ^ (-X)-k+l} is bounded, uniformly with respect to m. Hence, if 

{B, _ (-x)-n} converges, then {B(1) . (-x)-n} oscillates. f 

Note that the oscillation has the character as described in Remark 3. 

Proof of Theorem 1.1. We shall first prove part B, then part A and finally part 
C. 

B. From Lemma 2.2 with K(7n/bn) equal to the periodic continued fraction 
K(a/b) , we find that 

Bn + Bn_Ix = (Bn + Bn-X) 

n-1 

(2.18) + E((bk - b)(Bn-k + Bn-k-1lX) k=i 

+ (ak+l - a)(Bn-k-I + Bfn-k-2X))Bk-1 

+ (bn -b)Bn-l B 

where we again have used that B(k) = B_. It follows easily by induction (or 
from Lemma 2.1) that 

(2.19) hn +n_IX (b +X)n for n=0, 1,2, 

Hence, 

Bn +Bn_IX 
n 

tbk-b ak+l-aA Bkl 

(2.20) (b + X)n k1+Z b+x (b + x)2 J(b + X)k 

+bn -b Bn- 1 
b+ bx (b + X)n-l' 

From Lemma 2.5A we know that {Bk(b + X)-k} is a bounded sequence since 
also -(b + x) is a fixed point of (1.1). Hence, the series in (2.20) converges 
absolutely as n -* oc and the last term vanishes. Using (2.4), we similarly find 
that 

An + An-lx al, 
n 

bk+l-b ak+2-aA Bk-l 
(b+x)n b+x k=E b + x (b + x (b X)k1 

(2.21) 
1n-b B' 

b+x (b+x)n-2 

converges to a finite value as n -- oc. 
We want to prove that the limits of (2.20) and (2.21) are not both equal to 

zero. So assume that 

Bn + Bn-lx .An +An-lx a= i B(') +B() x 
(2.22) lim -b+ An lim _ a lim n - = 0. 

n-*oo (b+X)n n-*oo (b + X)n b + x n-oo (b + x)n 
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That is, by (2.20) and (2.21), 

(2.23) E+k( b + x (bb+ X)2 J (b+ X)k- I 

for m = 0 and m = 1. From (2.16) we find that 

(2.24) B(m) + B(m) x = bm+i(B(nml+) + B(m+l)X) + am+2(B(nm+2) + B(nm+2)X)X 

which implies that (2.23) holds for all m > 0. This is impossible because of 
(2.12). Hence, the convergence of Sn(x) to a value in C follows from (0.4). 

A. We want to prove that Sn(0) = An/Bn diverges in C (i.e., oscillates) as 
n -- oc. Since Sn(x) converges, it suffices to prove that (Sn(x) - Sn-1(0)) 
oscillates. 

Without loss of generality we assume that {Bn * (-x)-n} diverges 
by oscillation and that the limit of (2.20) is nonzero. (The limit 
limnO,0(Bnm) + B~rn-x)(b + x>- is clearly nonzero from some m on 

(see (2.20)), say for m > mo, and if {Bmo) * (-x)-n} converges, then 
{B(mo+l) * (-x)-n} oscillates. (See Lemma 2.5B.) Finally, K(an/bn) converges 
if and only if its kth tail converges, k = mo or k = mo + 1.) 

We have, using the determinant formula (0.5), 

Sn (X) - Sn- () =ABn 
+ An-lx _ An_1 

Bn+Bn-lx Bn-I 

(2.25) n B A i1(i+ 
X AnBn-B BBnAn- Blk= I a 

Bn - 1(Bn + Bn -lx ) Bn- . Bn + Bn _lIx 

(-Xn-I (b + X) 

since a = x(b + x) . The numerator of this last expression converges to a finite 
value :$ 0 as n -x oc because of (1.4), and so does also the second factor of its 
denominator. Since {Bn -I (-x)-n+ } diverges by oscillation, the oscillation 
of the whole expression follows. Note that the oscillation is as described in 
Remark 3. 

C. Let {tn} be the tail sequence of K(an/bn) with to = limn oo Sn(x). Then 

A(m) +Am 
)tm = lim S(m)(X) = lim A(m) + ABm x 

(2.26) B() B I~ 
- am+, 1 + EZ%lI dm+k+lDkm-1) 

b + x 1 + E?=l dm+kDm)l 

where the last equality follows from (2.20) and (2.21) when 

(2.27) d bjb + + D(im)= b+ 
' b +x (b+ X)2' (b +x)j 

Now, Ej Idj1 < 0, and {D(m)}%= is uniformly bounded with respect to m. 
(See Lemma 2.5A.) Hence, as m -x 00 the first factor in (2.26) approaches 
a/(b + x) = x and the second factor approaches 1. El 
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Proof of Theorem 1.2. A. We first observe that a, -- -1/4, so that K(a,z/1) 
is limit periodic of elliptic type for z > 1 . Hence, it would suffice to prove that 
E la, + 1/41 < oc. However, it is readily seen that this does not hold in general 
for the Gauss fraction. 

On the other hand, it suffices to prove that the even or the odd part of 
1 + K(az/l 1) diverges, i.e., that {S2,(O)} or {S2,n+I (O)} diverges. A continued 
fraction which has classical approximants equal to {S2,n (0) } is given by 

(2.28) 1 + alz a2a3Z2 a4a5Z2 a6a7Z2 

1 + a2z - 1 + a3z + a4z - 1 + a5Z + a6Z - 1 + a7Z + a8Z 

(See, for instance, [8, p.42].) 
Let us first assume that z $z 2. Then 1 + a2nllz + a2nz :$ 0 from some n 

on. Since (2.28) diverges if and only if a tail of (2.28) diverges, we may without 
loss of generality assume that 1 + a2z $= 0 and 1 + a2n_1z + a2n z $ 0 for all 
n > 2. An equivalence transformation (see, for instance, [8, p.31]) will then 
bring (2.28) over to the form 1 + K(cn(z)/ 1), where 

(2.29) Cn+1t (z) = (1 + a2nlz + a2nz)(1 + a2n+1z + a2n+2Z) 

for n > 2. Inserting the expressions (1.7) for {an} into (2.29), we find (after 
some computation) that 
(2.30) 

Z2 

4(2 - z)2 

+ 1 z2 
16n2(2 - 3(2(c - 2a)2 + 2(c - 2b)2 - 2 - z(4(a - b)2 - 1)) 

+ 61(n-3). 

For z > 1, z $z 2 we find that -z2/4(2 -z)2 < -1/4, so that also K(cn(z)/l1) 
is limit periodic of elliptic type, and the divergence of K(cn (z)/ 1) follows from 
Theorem 1.1A. 

For z = 2 we have 

1 + a2n-lZ + a2nZ 

((a+n- 1)(c-b+n- 1) (b+n)(c-a+n) A 
1 - 2 ~~~~~~~~~~+ I~ 

(2.31) = - (c+2n-2)(c+2n- 1) (c+2n- 1)(c+2n)J 
(c - 2a)(c - 2b)(2n + c - 1) (c - 2a)(c - 2b) 

(c + 2n - 2)(c + 2n - 1)(c + 2n) - (c + 2n - 2)(c + 2n)' 

Hence, if c = 2a or c = 2b, then the first tail of (2.28) has the form K(dn/O). 
This is a divergent continued fraction since its sequence of classical approxi- 
mants {An/Bn} has the form oc, 0, oo, 0, oo, 0, .... 

Let c $z 2a and c $z 2b. Then (2.28) has the form 1 + K(dn/en), where 
dn - -1/4 and en is given by (2.31), i.e., en = 6(n-2), which means that 
K(dn/en) diverges by virtue of the classical Stern-Stolz Theorem [8, p. 79]. 

B. For z = 1 the expression (2.30) reduces to 

(2.32) cn+1(1) =- + 4(c-a-b)2- 1 &(n 4 1 6n2 
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and thus, for c - a - b = it, it has the form c+i (1) = -1/4 - d /16n2?+6(n-3) 
for a d > 1 . Hence, K(Cn(M)/1) diverges by Theorem 3.1 in [6]. 0 

To prove Theorem 1.3, we shall use the following lemma: 

Lemma 2.6. Let {tn} be a tail sequence for K(an/bn) with all tn $z oc. Then 
K(an/bn) converges in C if and only if 

(2.33) 0E 

n 
bj +tj 

n=o j=1 

converges in C. Moreover, K(an/bn) converges to to if and only if the sum of 
(2.33) is infinite. 

This is a generalization of a result by Waadeland [17]. It follows readily by 
dividing 

n 

(2.34) An - Bnto = 1I (-tm) (proved by induction) 
m=O 

by Bn as given by (2.1), and letting n -x o . 

Proof of Theorem 1.3. The sequence {tn } given by (1.10) is a tail sequence for 
K(an/ 1) with all tn $z oc . The sum (2.33) can be written 

- n + it)+(rr(j+ 1) 

n= - it- rl(j + 

n= n=1 2 = 

= n; (-it (I - it)2) 

(2.35) n=O (= 2it 2- 

where 6 = arg(2 + it) and a = -(t2 + 1/4) . According to [9, p.232] 

(2.36) H J (1 - ri - YW) i -rt a + o(njrla) as n -oo 

for a constant y $ 0. If Re(r) < -(t2 + 1/4), then the sum (2.35) converges 
absolutely (to a finite value). o 

3. A GENERALIZATION 

The ideas leading to Theorem 1.1 can also be used in the more general sit- 
uation where K(ar/bi) is "close to" some continued fraction K(9p/b2), even 
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if K(a,/b,) is not periodic as K(a/b) is. In the periodic case we always had 
(Lemma 2.4) that 

(3.1) B n <KM and B,n <M forall n>O, j>0 
-Xn- (b+ X)n 

for some finite constant M > 0. The analogue to this is now 
(3.2) 

Bn < M and n <M for n>O, j>0, 
W=j+n (-tm) W,tj+n(m + 

where {I}, in $ 00, is a tail sequence for K(nl/bn) and {hj)}1 are the 
denominators of its jth tail. Hence, we shall require that (3.2) holds. Note that 
by Lemma 2.1 this condition on K(nl/bn) can be written 

(3.2') J bm + tm <M and n b m_ < M. 
k=O m=j+l k=O m=j+k+lbm+tm 

Since 

(33) ~J7J n~4 j+k bm + j+kn 
I +ik 

(3.3) II 6m + tm = E II -m+t - E 1 bm + tm 
Mn=j+ Il k=O mn=j+lI-t k=O mn=j+l tin 

and 

j+n ~ n j+n n-1 (j+l)+n-1 
(3.4) fJ -tm Z -tm _ Eitm 

M=j+l bm + tm k=O m=j+k+l mI+ tm k=O m=(j+l)+k+l 

this actually means that 

bmn +tin 
(3.5) < 2M forall j > 0, n > 0. 

Hence, the first sum in (3.2') cannot converge in C, so by Lemma 2.6, K(&n/bn) 

has to diverge. 
Next we shall impose conditions on the "closeness" of K(anlbn) to K(/nlbn): 

(3.6) E 
n- 

bn<___nd_an 
__ a+ < 00. 

Zn= bn 0n= bnbn+a 

Observe that by (3.2') with n = 1 we find that 

(3.7) bj+1 <M and bj i+- < M for all j > 0. 
ti+1 I- jl+i+ 
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Our conditions therefore imply that 

bn- bn an+1- an+1 

n1 |bn + in n=1| (bn + in)(bn+1 + in+l) 

(3.8) E bna- bn < 0ai E an+1 - an+l < 00i 
n=1 in ~~n=1 i n 

n=1 in(bn+ + in+i)< 

Of course, for the case where {bn} is bounded and bounded away from the 
origin, such as for K(a/b) in Theorem 1. 1, the condition (3.6) reduces to ( 1.4). 

Theorem 3.1. Let K(&n/bn) be a continuedfraction with tail sequence {fn } such 
that all in = Xo and (3.2') holdsfor all n > 0 and j > 0. Letfurther K(an/bn) 
be a continued fraction close to K(&n/bn) in the sense that (3.6) holds. Then: 

A. K(an/bn) diverges. 
B. The modified approximants Sn (in) of K(an /bn) converge to a limit to E C 

as n - 00. 
C. The tail sequence {tnl of K(an/bn) with to = limSn(1n) satisfies 

limn ,oo(tn -in) = 0. 

Proof. By copying the proof of Lemma 2.5A we find that 

(3.9) | t tm) 1|( <bMl and | nj+i(b + t) Ml 
forn> 1, j>O 

for some finite constant M1. We also want to prove that the two sequences 

{Br/n In=1-_m)} and {Bn1)/ fl+t2(-im)} cannot both converge in C as n 
00. To do this, we copy the proof of Lemma 2.5B. But first we observe that by 
Lemma 2.1 

n k n 

Bn Z IJ (bm + tm) II (-tm)) 
k=O m=l m=k+l 

j-1 k n 

E IJ (bm + tm) II (-tm) 

(3.10) 
k=O m=1 m=k+ l 

+E II(bm+tm) jh (-tm)) 

k=j m=l m=k+l 

n i 

=Bj-l ]I (-tm) + BkJ)j II (bm + tm) 
m=j m=l 
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for 0 < < n. Combining this with Lemma 2.2 gives 
(3.11) 

Bn Bn 

nI= (-im) r-H=n1 (m) 

+ bk' 
- k + ak+1 -ak+1 n(k+i)B- 

k k r k+ltm) tk tk+1 r=k+2(-m) Hrk (_im) 

Bn (bk-bk Bn-Bk 1IHrm=k(-tm) 

m=1 (-tm) k=l tk HM=i (bm + Im) rHn-k+1(-m) 

+ak+1-ak+ 1 . fl BkHrn m=k+1(tm) Bk1 
tk tk+1 l Hrtm-1 (Ibm + tm ) Hrn mk+2(-tm ) J Hkl= (-tm) 

= rIn -1(-tm) { k ( -tk m-l bmIn = 

+ak+i7ak+1 k+ tim ) Bk-1i 

____k Bk.-1 

kc=l <bk +tk HJEkn-i (bm+ tm) 

+ ak+1-ak+1 . Bk W Bk-l 
-k(bk+1 +k+1 (bm + im +tm)/ Jk 'I (_4m) 

The second series in this last expression converges absolutely as n -x0 since 
(3.2), (3.8), and (3.9) hold. So does also the first series since by (3.5) 

(3.12) fJ-Il bm <2M+ t 

Since K(can/bn) diverges, we know by Lemma 2.6 that {Bnl/ = (-Im)} di- 
verges, and the question is again reduced to the question of whether 

i+ 

n 

(bk+k--k+i 

k 

m+ 

( ) k=l ( tk+j 
mi bm+ + 

tm+] 

(3.13) - k+i~~~~~~~~~~ k1 

+ak+j+1ak+J+i a -tm+j k =kj0 
tk+jtk+j+i rn-i m+j +k m+j J m n- k - I_+m) 

can be true simultaneously for j = 0 and j = 1. But, just as in Lemma 
2.5B, if (3.13) holds for j = 0, 1, then (3.13) holds for all j ? 0, which is 
impossible. Hence, the oscillation follows. Note also that this oscillation has 
the same character as the one of Bn/ Hm=i(-lm). 

Let us start by proving part B: 
B. The analogue to (2.18) is 
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Bn + Bn-ltn = (Jn + Bn-lin) 

n-I 

+ Z((bk - nb)(k n)+ B-k1n) 
(3. 14) k=1 

+ (ak+l - ak+ )(Bn-k) + n-k)2n))Bk- 

+ (bn - bn)Bn-I 

where, by induction on n, 

k+n 

(3.15) B(k) +B k_ - 17 (bm + tm). 
m=k+l 

Hence, 

Bn + Bn-litn 

Wni (bm + im) 
n- bk-bk ak+1 -ak+ lj Bkl 

(3.16) =1 + E ( _ + kkk+1 ak+1 )im-i 

bn-bn Bn-i 

bn + in Hm=il(bm + tm) 

and the convergence of (3.16) to a finite value as n -* ox follows. The conver- 

gence of 

An + An-lin na Bn1) +Bn- 

(1m=7I=(bm + tm) b1 + li Hrm=2(bm + Im) 

follows similarly. That the limits of (3.16) and (3.17) are not both zero follows 
as in the proof of Theorem 1.1 B. 

A. The analogue to (2.25) is 

Sn(in) -Sn-I (O) = ( 1)I fl ak 

(3.18) Bn- i(Bn + Bn- 1 in) 
to= tk= 1(1 + (ak-ak)/ak) 

(Bn-i/ flI-I- )) * (Bn + Bn=ln)/Hl(bm + tm) 

since ak = tk_ -(bk + tk). We have just proved that the second factor in the 

denominator of this expression converges to a finite value. Without loss of 

generality we may assume that it is nonzero. The numerator converges to a 

value in C \ {0} by virtue of (3.8). Finally, without loss of generality, the first 

factor of the denominator oscillates in C. Observe that the oscillation of Sn (0) 

thus has the same character as the one of 5n (0). 
C. The proof is just as for Theorem 1.1 C, since 

(3.19) am-a_m = am Jm-i 0. El 
bm + tm bm + tm 

Also here we have actually proved that (3.16) and (3.17) converge separately 
to finite values which are not both equal to zero. 
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Example. Let x = 0, -1 and y = 0, -1 be two complex numbers such that 

(3.20) Y(l + Y) = ei9 for some O < 0 < 27r. 

Then the 2-periodic continued fraction 

(3.2) Kan xy (1 + x)(l + y) xy (1 + X)(1 + y) 

(3.21) K-1 =__ 1 - 1 - 1 

is of elliptic type, and thus it diverges. Moreover, {tn}fn=o, where im = 

x, t2n+1 = -(1 + y) for all n, is a tail sequence for K(dn /1). This tail 
sequence satisfies (3.2') since 

j+2 1+ yj+2 

(3.22) rI li/rn - *+Y= e-i6 1i tm =-e 

and thus, for instance, 

2n-1 2j-l+k n-i 2j-1+2k 1+ n-i 2j+2kl+im 

Ezl+tm z I = E ri + tr 
(3.23) k=O m=2j tm k=O m=2j tm k=O m=2j tm 

~~~ikO~1 1+x e_n1 
=Ee LikO + L l + X eikO -Le+L ~~-x -x e, 

k=O k=O 

Actually, we easily find that (3.2') holds with 

(3.24) M = max {l!j T 1: + l+y, 1}*I1 < oo. 

From Theorem 3.1A we therefore find that every continued fraction K(an/1l) 
such that E Ian - an I < o diverges. 

Final remark. One can relax condition (3.2) and still get results like Theorem 
3.1 if one compensates by restricting (3.6). 
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